

Nominal size DN 65-80 Nominal size 2 1/2"-3" Nominal pressure PN 10 bar

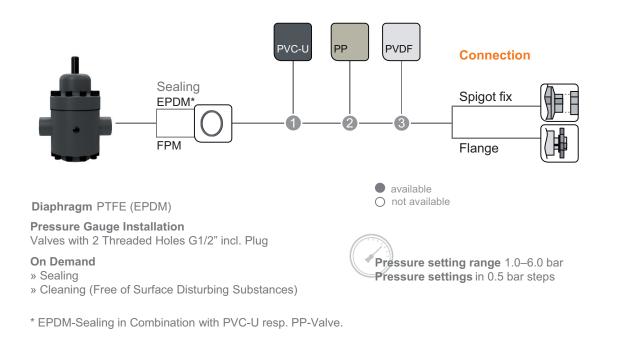


#### Features

- pressure setting range 1 to 6 bar
- EPDM diaphragm, PTFE-coated on the medium side
- control valve for large capacities
- for reliable reduction of system pressures to virtually constant working pressures
- constant, low vibration control behavior
- high reproducibility of the set pressure
- pressure setting possible at any time, also during operation
- two lateral threaded connections for pressure gauges or diaphragm pressure gauge guards

#### Additional options on request

- silicone free
- pressure presetting
- sealed


www.asv-stuebbe.com/produkte/mess-und-regeltechnik







### Pictogram Pressure Reducing Valve DMV 750



#### Basic Nominal Sizes:

|      |       |       |       |       |       |       |       |       |       |        |        |        | <br>   |        |        |        |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| DN 8 | DN 10 | DN 15 | DN 20 | DN 25 | DN 32 | DN 40 | DN 50 | DN 65 | DN 80 | DN 100 | DN 125 | DN 150 | DN 250 | DN 300 | DN 350 | DN 400 |

#### **Connection Material (process connection)**





#### Use

- chemical plant engineering
- industrial plant engineering
- water treatment

#### Application

- The pressure reducing valve which is directly controlled by the medium, is used in technical processing plants for reducing primary pressures to system dependent working pressures and for controlled maintenance of working pressures.
- Not suitable as an equipment part with safety function according to the Pressure Vessel Directive

#### Valve function

- The open valve is balanced between the inlet pressure (primary pressure) and the lower working pressure (secondary pressure). If the working pressure exceeds or goes below the desired value, the large area membrane is lifted against the spring force or pressed down by the spring force. The valve starts closing or opening until the balanced condition is reached again, i.e. the working pressure remains constant independent of an increasing or decreasing inlet pressure (as long as the inlet pressure > working pressure).
- The valve piston is designed to match the plastic characteristics and is generously dimensioned for reliably withstanding high closing forces at the valve seat. The diaphragm separates the medium in the valve body from the bonnet and the atmosphere.
  The principle ensures that the secondary pressure acting on the diaphragm is compensated by the spring force which is held in equilibrium by the pressure setting.

#### Valve setting

- Set or adjust the working pressure to be kept constant with the aid of pressure gauges (ASV diaphragm pressure gauge guard with pressure gauge, type MDM 902) in the pipe system after removing the protection cap at the adjustment screw. The adjustment screw is secured by a counter nut and can be sealed against unauthorized adjustment, if necessary.
- There is a differentiation between: Secondary pressure - system closed or secondary pressure - system dynamically flowing



#### Flow medium

• Technically pure, neutral and aggressive fluids, provided that the selected valve materials coming into contact with the media are resistant at the operating temperature according to the ASV resistance guide.

Stübbe

#### **Flow direction**

 always in the direction of the arrow, see graphics "Sectional drawing"

#### **ASV** resistance guide

www.asv-stuebbe.de/pdf\_resistance/300051.pdf

#### **Process temperature**

• See graphics "Pressure/temperature diagram"

#### **Process pressure**

• See graphics "Pressure/temperature diagram"

#### Nominal pressure (H<sub>2</sub>O, 20 °C)

• PN 10 bar

#### Size

• DN 65-80

#### Pressure setting range

• 1–6 bar

#### Working pressure

 set pressure minus flow dependent pressure reduction (see characteristic curves): Secondary pressure 1–6 bar

#### **Constant working pressure**

• approx. ± 0.2 bar

#### Hysteresis

• Difference between opening and closing pressure approx. 0.1-0.4 bar

#### Actuation

medium controlled

# contact@mandalaypcf.com.au

+61296159774



#### **Device connection**

 see graphics "Pictograph pressure reducing valve DMV 750"

#### Material with medium contact

Housing/bonnet:

• PVC-U, PP, PVDF

Diaphragm:

• PTFE

(EPDM diaphragm, PTFE-coated on the medium side) Sealing:

• EPDM, FPM

#### Material without medium contact

Screws:

• Stainless steel (1.4301)

#### **Mounting position**

• as required

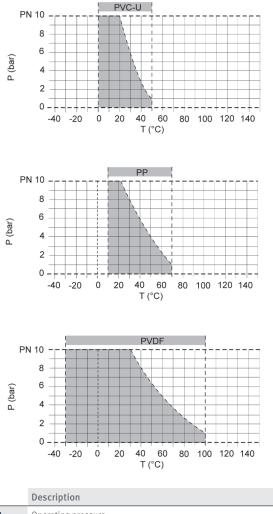
#### Color

- PVC-U: gray, RAL 7011
- PP: gray, RAL 7032
- PVDF: opaque, yellowish-white

#### Pressure gauge connection

• The pressure reducing valves can be factory fitted with a pressure gauge for neutral media. The resistance of the pressure gauge material has to be taken into consideration for other medium types.

#### Pressure gauge preparation

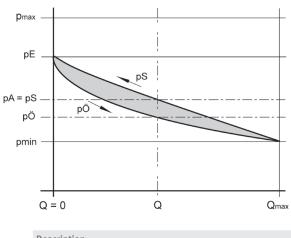

• Housing bore on both sides G 1/2" with plug

#### Pressure gauge

- Chemical version, damped
- Chemical version, undamped
- Contact pressure gauge








#### Pressure/temperature diagram

|   | 40                 | -20 | U | 20 | Т (°( |  | 00 | 100 | 120 | 140 |  |   |
|---|--------------------|-----|---|----|-------|--|----|-----|-----|-----|--|---|
|   | Descript           | ion |   |    |       |  |    |     |     |     |  |   |
| Р | Operating pressure |     |   |    |       |  |    |     |     |     |  |   |
| Т | Temperature        |     |   |    |       |  |    |     |     |     |  |   |
|   |                    |     |   |    |       |  |    |     |     |     |  | _ |

The pressure/temperature limits of the materials are valid for the stated nominal pressures and a service life of 25 years. These values are guide values for flow medium types which do not negatively impact the physical and chemical characteristics of the valve material. It may be necessary to take diminution factors into consideration.

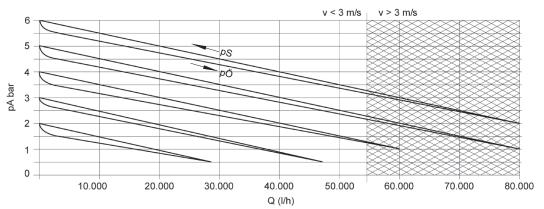
The durability of wear parts depends on the operating conditions of the application.

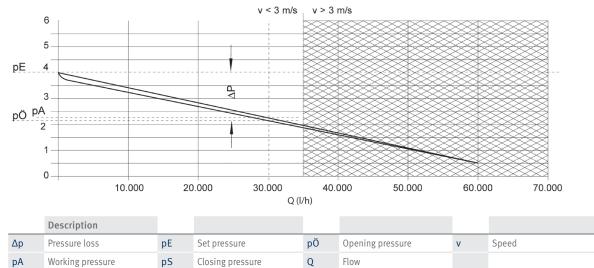


|                  | Description                       |  |  |  |
|------------------|-----------------------------------|--|--|--|
| p <sub>max</sub> | Maximum pressure                  |  |  |  |
| p <sub>min</sub> | Minimum pressure                  |  |  |  |
| pА               | Working pressure                  |  |  |  |
| рE               | Set pressure                      |  |  |  |
| pA-pE            | Flow dependent pressure reduction |  |  |  |
| pÖ               | Opening pressure                  |  |  |  |
| pS               | Closing pressure                  |  |  |  |
| pÖ-pS            | Hysteresis                        |  |  |  |
| Q                | Flow                              |  |  |  |
| Q <sub>max</sub> | Maximum flow                      |  |  |  |

#### **Operating behavior**







**Characteristic curves** 

### Pressure Reducing Valve DMV 750

DN 65 v < 3 m/s v > 3 m/s 6 5 ps Δ рĊ pA bar 3 2 1 0 10.000 20.000 30.000 40.000 50.000 60.000 70.000 Q (l/h)

DN 80

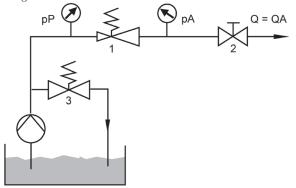




Design example DN 65

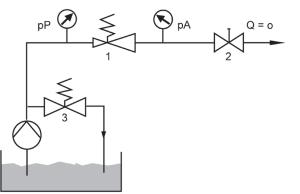
The valve is set tight at 4 bar. Desired flow rate 30,000 l/h, medium  $H_2O$ . According to the curve, this results in the following values: Set pressure pE: 4 bar, pressure reduction: 1.8 bar, working pressure pA: 2.2 bar




# +612 9615 9774

contact@mandalaypcf.com.au




#### Applications for pressure reducing valves

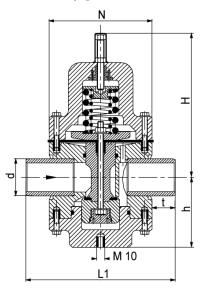
Example 1: Secondary pressure - system dynamically flowing



If the stop valve is closed, the working pressure pA increases by the amount of the closing pressure pS.

Example 2: secondary pressure - system closed

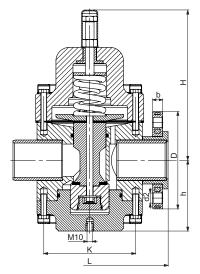



If the stop valve is opened, the working pressure pA drops by the amount of the opening pressure pÖ.

|    | Description             |  |  |
|----|-------------------------|--|--|
| pА | Working pressure        |  |  |
| pР | Pump pressure           |  |  |
| Q  | Flow                    |  |  |
| QA | Flow in working point   |  |  |
| 1  | Pressure reducing valve |  |  |
| 2  | Stop valve              |  |  |
| 3  | Pressure relief valve   |  |  |



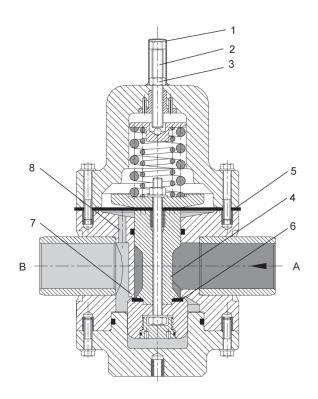



**Connection spigot** 



\_

| d (mm)    | 75    | 90    |
|-----------|-------|-------|
| DN (mm)   | 65    | 80    |
| DN (inch) | 2 1/2 | 3     |
| b         | 19.0  | 21.0  |
| d2        | 18.0  | 18.0  |
| D         | 186.0 | 201.0 |
| h         | 121.0 | 143.0 |
| Н         | 265.0 | 340.0 |
| К         | 145.0 | 160.0 |
| L         | 290.0 | 368.0 |
| L1        | 284.0 | 360.0 |
| Ν         | 195.0 | 250.0 |
| t         | 44.0  | 55.0  |

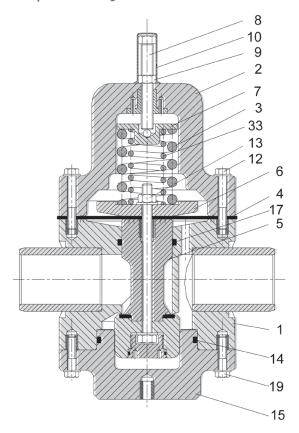

#### **Connection flange**







#### Sectional drawing




|   | Description       |  |  |  |
|---|-------------------|--|--|--|
| А | Primary side      |  |  |  |
| В | Secondary side    |  |  |  |
| 1 | Protection cap    |  |  |  |
| 2 | Adjustment screw  |  |  |  |
| 3 | Counter nut       |  |  |  |
| 4 | Piston            |  |  |  |
| 5 | Diaphragm         |  |  |  |
| 6 | Flat sealing ring |  |  |  |
| 7 | Valve seat        |  |  |  |
| 8 | Control bore hole |  |  |  |

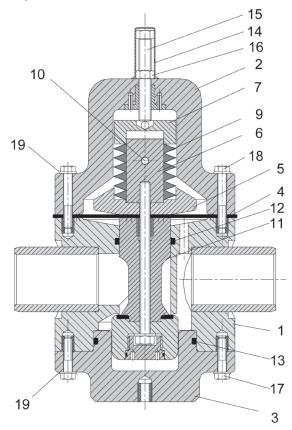




**Components DN 65** 



|    | Quantity | Description                |
|----|----------|----------------------------|
| 1  | 1        | Valve body                 |
| 2  | 1        | Bonnet                     |
| 3  | 1        | Pressure spring            |
| 4  | 1        | Diaphragm                  |
| 5  | 1        | Piston, complete           |
| 6  | 1        | Spring plate               |
| 7  | 1        | Pressure plate             |
| 8  | 1        | Adjustment screw           |
| 9  | 1        | Counter nut                |
| 10 | 1        | Сар                        |
| 12 | 2        | Screw                      |
| 13 | 1        | Hexagon nut                |
| 14 | 1        | 0-ring                     |
| 15 | 1        | Flange                     |
| 17 | 1        | O-ring                     |
| 19 | 2        | Screw                      |
| 20 | 8        | Threaded rod               |
| 21 | 1        | Pressure gauge (option)    |
| 22 | 1        | Flat sealing ring (option) |
| 33 | 1        | Pressure spring            |

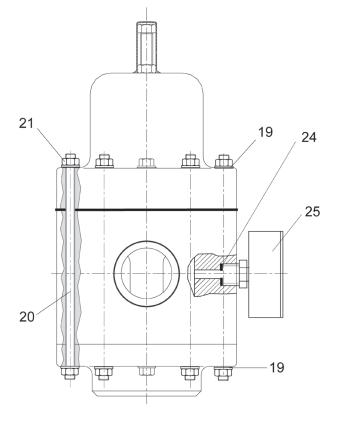



## +612 9615 9774

contact@mandalaypcf.com.au



**Components DN 80** 




|    | Quantity | Description                |
|----|----------|----------------------------|
| 1  | 1        | Housing, complete          |
| 2  | 1        | Bonnet                     |
| 3  | 1        | Valve cover                |
| 4  | 1        | Diaphragm                  |
| 5  | 1        | Spring plate               |
| 6  | 1        | Guiding mandrel            |
| 7  | 1        | Pressure piece             |
| 9  | 1        | Disc spring                |
| 10 | 1        | Steel ball                 |
| 11 | 1        | Piston, complete           |
| 12 | 1        | 0-ring                     |
| 13 | 1        | 0-ring                     |
| 14 | 1        | Protection cap             |
| 15 | 1        | Adjustment screw           |
| 16 | 1        | Counter nut                |
| 17 | 2        | Screw                      |
| 18 | 2        | Screw                      |
| 19 | 20       | Washer                     |
| 20 | 8        | Threaded rod               |
| 21 | 16       | Hexagon nut                |
| 24 | 2        | Flat sealing ring (option) |
| 25 | 1        | Pressure gauge (option)    |



+612 9615 9774

contact@mandalaypcf.com.au

